Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DRL-based Joint Resource Scheduling of eMBB and URLLC in O-RAN (2407.11558v1)

Published 16 Jul 2024 in eess.SP

Abstract: This work addresses resource allocation challenges in multi-cell wireless systems catering to enhanced Mobile Broadband (eMBB) and Ultra-Reliable Low Latency Communications (URLLC) users. We present a distributed learning framework tailored to O-RAN network architectures. Leveraging a Thompson sampling-based Deep Reinforcement Learning (DRL) algorithm, our approach provides real-time resource allocation decisions, aligning with evolving network structures. The proposed approach facilitates online decision-making for resource allocation by deploying trained execution agents at Near-Real Time Radio Access Network Intelligent Controllers (Near-RT RICs) located at network edges. Simulation results demonstrate the algorithm's effectiveness in meeting Quality of Service (QoS) requirements for both eMBB and URLLC users, offering insights into optimising resource utilisation in dynamic wireless environments.

Citations (3)

Summary

We haven't generated a summary for this paper yet.