Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Approach for Predicting the Air Quality Index of Megacities through Attention-Enhanced Deep Multitask Spatiotemporal Learning (2407.11283v1)

Published 15 Jul 2024 in cs.LG

Abstract: Air pollution remains one of the most formidable environmental threats to human health globally, particularly in urban areas, contributing to nearly 7 million premature deaths annually. Megacities, defined as cities with populations exceeding 10 million, are frequent hotspots of severe pollution, experiencing numerous weeks of dangerously poor air quality due to the concentration of harmful pollutants. In addition, the complex interplay of factors makes accurate air quality predictions incredibly challenging, and prediction models often struggle to capture these intricate dynamics. To address these challenges, this paper proposes an attention-enhanced deep multitask spatiotemporal machine learning model based on long-short-term memory networks for long-term air quality monitoring and prediction. The model demonstrates robust performance in predicting the levels of major pollutants such as sulfur dioxide and carbon monoxide, effectively capturing complex trends and fluctuations. The proposed model provides actionable information for policymakers, enabling informed decision making to improve urban air quality.

Summary

We haven't generated a summary for this paper yet.