Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost-linear Time Approximation Algorithm to Euclidean $k$-median and $k$-means (2407.11217v2)

Published 15 Jul 2024 in cs.DS and cs.AI

Abstract: Clustering is one of the staples of data analysis and unsupervised learning. As such, clustering algorithms are often used on massive data sets, and they need to be extremely fast. We focus on the Euclidean $k$-median and $k$-means problems, two of the standard ways to model the task of clustering. For these, the go-to algorithm is $k$-means++, which yields an $O(\log k)$-approximation in time $\tilde O(nkd)$. While it is possible to improve either the approximation factor [Lattanzi and Sohler, ICML19] or the running time [Cohen-Addad et al., NeurIPS 20], it is unknown how precise a linear-time algorithm can be. In this paper, we almost answer this question by presenting an almost linear-time algorithm to compute a constant-factor approximation.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com