Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Label Recovery in Euclidean Random Graphs (2407.11163v2)

Published 15 Jul 2024 in cs.SI and math.PR

Abstract: In this paper, we propose a family of label recovery problems on weighted Euclidean random graphs. The vertices of a graph are embedded in $\mathbb{R}d$ according to a Poisson point process, and are assigned to a discrete community label. Our goal is to infer the vertex labels, given edge weights whose distributions depend on the vertex labels as well as their geometric positions. Our general model provides a geometric extension of popular graph and matrix problems, including submatrix localization and $\mathbb{Z}_2$-synchronization, and includes the Geometric Stochastic Block Model (proposed by Sankararaman and Baccelli) as a special case. We study the fundamental limits of exact recovery of the vertex labels. Under a mild distinctness of distributions assumption, we determine the information-theoretic threshold for exact label recovery, in terms of a Chernoff-Hellinger divergence criterion. Impossibility of recovery below the threshold is proven by a unified analysis using a Cram\'er lower bound. Achievability above the threshold is proven via an efficient two-phase algorithm, where the first phase computes an almost-exact labeling through a local propagation scheme, while the second phase refines the labels. The information-theoretic threshold is dictated by the performance of the so-called genie estimator, which decodes the label of a single vertex given all the other labels. This shows that our proposed models exhibit the local-to-global amplification phenomenon.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com