Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bag of Tricks for Scaling CPU-based Deep FFMs to more than 300m Predictions per Second (2407.10115v1)

Published 14 Jul 2024 in cs.LG, cs.AI, and cs.IR

Abstract: Field-aware Factorization Machines (FFMs) have emerged as a powerful model for click-through rate prediction, particularly excelling in capturing complex feature interactions. In this work, we present an in-depth analysis of our in-house, Rust-based Deep FFM implementation, and detail its deployment on a CPU-only, multi-data-center scale. We overview key optimizations devised for both training and inference, demonstrated by previously unpublished benchmark results in efficient model search and online training. Further, we detail an in-house weight quantization that resulted in more than an order of magnitude reduction in bandwidth footprint related to weight transfers across data-centres. We disclose the engine and associated techniques under an open-source license to contribute to the broader machine learning community. This paper showcases one of the first successful CPU-only deployments of Deep FFMs at such scale, marking a significant stride in practical, low-footprint click-through rate prediction methodologies.

Summary

We haven't generated a summary for this paper yet.