Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VLMPC: Vision-Language Model Predictive Control for Robotic Manipulation (2407.09829v1)

Published 13 Jul 2024 in cs.RO

Abstract: Although Model Predictive Control (MPC) can effectively predict the future states of a system and thus is widely used in robotic manipulation tasks, it does not have the capability of environmental perception, leading to the failure in some complex scenarios. To address this issue, we introduce Vision-LLM Predictive Control (VLMPC), a robotic manipulation framework which takes advantage of the powerful perception capability of vision LLM (VLM) and integrates it with MPC. Specifically, we propose a conditional action sampling module which takes as input a goal image or a language instruction and leverages VLM to sample a set of candidate action sequences. Then, a lightweight action-conditioned video prediction model is designed to generate a set of future frames conditioned on the candidate action sequences. VLMPC produces the optimal action sequence with the assistance of VLM through a hierarchical cost function that formulates both pixel-level and knowledge-level consistence between the current observation and the goal image. We demonstrate that VLMPC outperforms the state-of-the-art methods on public benchmarks. More importantly, our method showcases excellent performance in various real-world tasks of robotic manipulation. Code is available at~\url{https://github.com/PPjmchen/VLMPC}.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub