Papers
Topics
Authors
Recent
Search
2000 character limit reached

Integer programs with nearly totally unimodular matrices: the cographic case

Published 12 Jul 2024 in math.CO, cs.DM, cs.DS, and math.OC | (2407.09477v1)

Abstract: It is a notorious open question whether integer programs (IPs), with an integer coefficient matrix $M$ whose subdeterminants are all bounded by a constant $\Delta$ in absolute value, can be solved in polynomial time. We answer this question in the affirmative if we further require that, by removing a constant number of rows and columns from $M$, one obtains a submatrix $A$ that is the transpose of a network matrix. Our approach focuses on the case where $A$ arises from $M$ after removing $k$ rows only, where $k$ is a constant. We achieve our result in two main steps, the first related to the theory of IPs and the second related to graph minor theory. First, we derive a strong proximity result for the case where $A$ is a general totally unimodular matrix: Given an optimal solution of the linear programming relaxation, an optimal solution to the IP can be obtained by finding a constant number of augmentations by circuits of $[A\; I]$. Second, for the case where $A$ is transpose of a network matrix, we reformulate the problem as a maximum constrained integer potential problem on a graph $G$. We observe that if $G$ is $2$-connected, then it has no rooted $K_{2,t}$-minor for $t = \Omega(k \Delta)$. We leverage this to obtain a tree-decomposition of $G$ into highly structured graphs for which we can solve the problem locally. This allows us to solve the global problem via dynamic programming.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.