Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tail-robust factor modelling of vector and tensor time series in high dimensions (2407.09390v3)

Published 12 Jul 2024 in stat.ME

Abstract: We study the problem of factor modelling vector- and tensor-valued time series in the presence of heavy tails in the data, which produce anomalous observations with non-negligible probability. For this, we propose to combine a two-step procedure for tensor data decomposition with data truncation, which is easy to implement and does not require an iterative search for a numerical solution. Departing away from the light-tail assumptions often adopted in the time series factor modelling literature, we derive the consistency and asymptotic normality of the proposed estimators while assuming the existence of the $(2 + 2\epsilon)$-th moment only for some $\epsilon \in (0, 1)$. Our rates explicitly depend on $\epsilon$ characterising the effect of heavy tails, and on the chosen level of truncation. We also propose a consistent criterion for determining the number of factors. Simulation studies and applications to two macroeconomic datasets demonstrate the good performance of the proposed estimators.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com