Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nontriviality of rings of integral-valued polynomials (2407.09351v1)

Published 12 Jul 2024 in math.NT and math.AC

Abstract: Let $S$ be a subset of $\overline{\mathbb Z}$, the ring of all algebraic integers. A polynomial $f \in \mathbb Q[X]$ is said to be integral-valued on $S$ if $f(s) \in \overline{\mathbb Z}$ for all $s \in S$. The set $\text{Int}{\mathbb Q}(S,\overline{\mathbb Z})$ of all integral-valued polynomials on $S$ forms a subring of $\mathbb Q[X]$ containing $\mathbb Z[X]$. We say that $\text{Int}{\mathbb Q}(S,\overline{\mathbb Z})$ is trivial if $\text{Int}{\mathbb Q}(S,\overline{\mathbb Z}) = \mathbb Z[X]$, and nontrivial otherwise. We give a collection of necessary and sufficient conditions on $S$ in order $\text{Int}{\mathbb Q}(S,\overline{\mathbb Z})$ to be nontrivial. Our characterizations involve, variously, topological conditions on $S$ with respect to fixed extensions of the $p$-adic valuations to $\overline{\mathbb Q}$; pseudo-monotone sequences contained in $S$; ramification indices and residue field degrees; and the polynomial closure of $S$ in $\overline{\mathbb Z}$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com