Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introducing VaDA: Novel Image Segmentation Model for Maritime Object Segmentation Using New Dataset (2407.09005v1)

Published 12 Jul 2024 in cs.CV, cs.AI, and eess.IV

Abstract: The maritime shipping industry is undergoing rapid evolution driven by advancements in computer vision AI. Consequently, research on AI-based object recognition models for maritime transportation is steadily growing, leveraging advancements in sensor technology and computing performance. However, object recognition in maritime environments faces challenges such as light reflection, interference, intense lighting, and various weather conditions. To address these challenges, high-performance deep learning algorithms tailored to maritime imagery and high-quality datasets specialized for maritime scenes are essential. Existing AI recognition models and datasets have limited suitability for composing autonomous navigation systems. Therefore, in this paper, we propose a Vertical and Detail Attention (VaDA) model for maritime object segmentation and a new model evaluation method, the Integrated Figure of Calculation Performance (IFCP), to verify its suitability for the system in real-time. Additionally, we introduce a benchmark maritime dataset, OASIs (Ocean AI Segmentation Initiatives) to standardize model performance evaluation across diverse maritime environments. OASIs dataset and details are available at our website: https://www.navlue.com/dataset

Citations (1)

Summary

We haven't generated a summary for this paper yet.