Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncovering Semantics and Topics Utilized by Threat Actors to Deliver Malicious Attachments and URLs (2407.08888v1)

Published 11 Jul 2024 in cs.LG

Abstract: Recent threat reports highlight that email remains the top vector for delivering malware to endpoints. Despite these statistics, detecting malicious email attachments and URLs often neglects semantic cues linguistic features and contextual clues. Our study employs BERTopic unsupervised topic modeling to identify common semantics and themes embedded in email to deliver malicious attachments and call-to-action URLs. We preprocess emails by extracting and sanitizing content and employ multilingual embedding models like BGE-M3 for dense representations, which clustering algorithms(HDBSCAN and OPTICS) use to group emails by semantic similarity. Phi3-Mini-4K-Instruct facilitates semantic and hLDA aid in thematic analysis to understand threat actor patterns. Our research will evaluate and compare different clustering algorithms on topic quantity, coherence, and diversity metrics, concluding with insights into the semantics and topics commonly used by threat actors to deliver malicious attachments and URLs, a significant contribution to the field of threat detection.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com