Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Taming non-analyticities of QFT observables (2407.08815v1)

Published 11 Jul 2024 in hep-th, math-ph, and math.MP

Abstract: Many observables in quantum field theories are involved non-analytic functions of the parameters of the theory. However, it is expected that they are not arbitrarily wild, but rather have only a finite amount of geometric complexity. This expectation has been recently formalized by a tameness principle: physical observables should be definable in o-minimal structures and their sharp refinements. In this work, we show that a broad class of non-analytic partition and correlation functions are tame functions in the o-minimal structure known as $\mathbb{R}{\mathscr{G}}$ - the structure defining Gevrey functions. Using a perturbative approach, we expand the observables in asymptotic series in powers of a small coupling constant. Although these series are often divergent, they can be Borel-resummed in the absence of Stokes phenomena to yield the full partition and correlation functions. We show that this makes them definable in $\mathbb{R}{\mathscr{G}}$ and provide a number of motivating examples. These include certain 0-dimensional quantum field theories and a set of higher-dimensional quantum field theories that can be analyzed using constructive field theory. Finally, we discuss how the eigenvalues of certain Hamiltonians in quantum mechanics are also definable in $\mathbb{R}_{\mathscr{G}}$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.