Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower $T$-count with faster algorithms (2407.08695v1)

Published 11 Jul 2024 in quant-ph

Abstract: Among the cost metrics characterizing a quantum circuit, the $T$-count stands out as one of the most crucial as its minimization is particularly important in various areas of quantum computation such as fault-tolerant quantum computing and quantum circuit simulation. In this work, we contribute to the $T$-count reduction problem by proposing efficient $T$-count optimizers with low execution times. In particular, we greatly improve the complexity of TODD, an algorithm currently providing the best $T$-count reduction on various quantum circuits. We also propose some modifications to the algorithm which are leading to a significantly lower number of $T$ gates. In addition, we propose another algorithm which has an even lower complexity and that achieves a better or equal $T$-count than the state of the art on most quantum circuits evaluated. We also prove that the number of $T$ gates in the circuit obtained after executing our algorithms on a Hadamard-free circuit composed of $n$ qubits is upper bounded by $n(n + 1)/2 + 1$, which is the best known upper bound achievable in polynomial time. From this we derive an upper bound of $(n + 1)(n + 2h)/2 + 1$ for the number of $T$ gates in a Clifford$+T$ circuit where $h$ is the number of internal Hadamard gates in the circuit, i.e.\ the number of Hadamard gates lying between the first and the last $T$ gate of the circuit.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com