Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ElasticAST: An Audio Spectrogram Transformer for All Length and Resolutions (2407.08691v1)

Published 11 Jul 2024 in cs.SD, cs.AI, and eess.AS

Abstract: Transformers have rapidly overtaken CNN-based architectures as the new standard in audio classification. Transformer-based models, such as the Audio Spectrogram Transformers (AST), also inherit the fixed-size input paradigm from CNNs. However, this leads to performance degradation for ASTs in the inference when input lengths vary from the training. This paper introduces an approach that enables the use of variable-length audio inputs with AST models during both training and inference. By employing sequence packing, our method ElasticAST, accommodates any audio length during training, thereby offering flexibility across all lengths and resolutions at the inference. This flexibility allows ElasticAST to maintain evaluation capabilities at various lengths or resolutions and achieve similar performance to standard ASTs trained at specific lengths or resolutions. Moreover, experiments demonstrate ElasticAST's better performance when trained and evaluated on native-length audio datasets.

Summary

We haven't generated a summary for this paper yet.