Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SLoRD: Structural Low-Rank Descriptors for Shape Consistency in Vertebrae Segmentation (2407.08555v3)

Published 11 Jul 2024 in eess.IV and cs.CV

Abstract: Automatic and precise multi-class vertebrae segmentation from CT images is crucial for various clinical applications. However, due to similar appearances between adjacent vertebrae and the existence of various pathologies, existing single-stage and multi-stage methods suffer from imprecise vertebrae segmentation. Essentially, these methods fail to explicitly impose both contour precision and intra-vertebrae voxel consistency constraints synchronously, resulting in the intra-vertebrae segmentation inconsistency, which refers to multiple label predictions inside a singular vertebra. In this work, we intend to label complete binary masks with sequential indices to address that challenge. Specifically, a contour generation network is proposed based on Structural Low-Rank Descriptors for shape consistency, termed SLoRD. For a structural representation of vertebral contours, we adopt the spherical coordinate system and devise the spherical centroid to calculate contour descriptors. Due to vertebrae's similar appearances, basic contour descriptors can be acquired offline to restore original contours. Therefore, SLoRD leverages these contour priors and explicit shape constraints to facilitate regressed contour points close to vertebral surfaces. Quantitative and qualitative evaluations on VerSe 2019 and 2020 demonstrate the superior performance of our framework over other single-stage and multi-stage state-of-the-art (SOTA) methods. Further, SLoRD is a plug-and-play framework to refine the segmentation inconsistency existing in coarse predictions from other approaches. Source codes are available.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com