Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continually Learn to Map Visual Concepts to Large Language Models in Resource-constrained Environments (2407.08279v1)

Published 11 Jul 2024 in cs.AI

Abstract: Learning continually from a stream of non-i.i.d. data is an open challenge in deep learning, even more so when working in resource-constrained environments such as embedded devices. Visual models that are continually updated through supervised learning are often prone to overfitting, catastrophic forgetting, and biased representations. On the other hand, LLMs contain knowledge about multiple concepts and their relations, which can foster a more robust, informed and coherent learning process. This work proposes Continual Visual Mapping (CVM), an approach that continually ground vision representations to a knowledge space extracted from a fixed LLM. Specifically, CVM continually trains a small and efficient visual model to map its representations into a conceptual space established by a fixed LLM. Due to their smaller nature, CVM can be used when directly adapting large visual pre-trained models is unfeasible due to computational or data constraints. CVM overcome state-of-the-art continual learning methods on five benchmarks and offers a promising avenue for addressing generalization capabilities in continual learning, even in computationally constrained devices.

Summary

We haven't generated a summary for this paper yet.