Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Language Models for Wearable Sensor-Based Human Activity Recognition, Health Monitoring, and Behavioral Modeling: A Survey of Early Trends, Datasets, and Challenges (2407.07196v2)

Published 9 Jul 2024 in cs.HC

Abstract: The proliferation of wearable technology enables the generation of vast amounts of sensor data, offering significant opportunities for advancements in health monitoring, activity recognition, and personalized medicine. However, the complexity and volume of this data present substantial challenges in data modeling and analysis, which have been tamed with approaches spanning time series modeling to deep learning techniques. The latest frontier in this domain is the adoption of LLMs, such as GPT-4 and Llama, for data analysis, modeling, understanding, and generation of human behavior through the lens of wearable sensor data. This survey explores current trends and challenges in applying LLMs for sensor-based human activity recognition and behavior modeling. We discuss the nature of wearable sensors data, the capabilities and limitations of LLMs to model them and their integration with traditional machine learning techniques. We also identify key challenges, including data quality, computational requirements, interpretability, and privacy concerns. By examining case studies and successful applications, we highlight the potential of LLMs in enhancing the analysis and interpretation of wearable sensors data. Finally, we propose future directions for research, emphasizing the need for improved preprocessing techniques, more efficient and scalable models, and interdisciplinary collaboration. This survey aims to provide a comprehensive overview of the intersection between wearable sensors data and LLMs, offering insights into the current state and future prospects of this emerging field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Emilio Ferrara (197 papers)
Citations (6)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets