Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Who Goes Next? Optimizing the Allocation of Adherence-Improving Interventions (2407.06898v1)

Published 9 Jul 2024 in math.OC and stat.AP

Abstract: Long-term adherence to medication is a critical factor in preventing chronic diseases, such as cardiovascular disease. To address poor adherence, physicians may recommend adherence-improving interventions; however, such interventions are costly and limited in their availability. Knowing which patients will stop adhering helps distribute the available resources more effectively. We developed a binary integer program (BIP) model to select patients for adherence-improving intervention under budget constraints. We further studied a long-term adherence prediction model using dynamic logistic regression (DLR) model that uses patients' claim data, medical health factors, demographics, and monitoring frequencies to predict the risk of future non-adherence. We trained and tested our predictive model to longitudinal data for cardiovascular disease in a large cohort of patients taking medication for cholesterol control seen in the national Veterans Affairs health system. Our study shows the importance of including past adherence to increase prediction accuracy. Finally, we assess the potential benefits of using the prediction model by proposing an algorithm that combines the DLR and BIP models to decrease the number of CVD events in a population.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com