Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient method to automate tooth identification and 3D bounding box extraction from Cone Beam CT Images (2407.05892v2)

Published 8 Jul 2024 in eess.IV, cs.AI, and cs.CV

Abstract: Accurate identification, localization, and segregation of teeth from Cone Beam Computed Tomography (CBCT) images are essential for analyzing dental pathologies. Modeling an individual tooth can be challenging and intricate to accomplish, especially when fillings and other restorations introduce artifacts. This paper proposes a method for automatically detecting, identifying, and extracting teeth from CBCT images. Our approach involves dividing the three-dimensional images into axial slices for image detection. Teeth are pinpointed and labeled using a single-stage object detector. Subsequently, bounding boxes are delineated and identified to create three-dimensional representations of each tooth. The proposed solution has been successfully integrated into the dental analysis tool Dentomo.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com