Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Heterogeneous window transformer for image denoising (2407.05709v2)

Published 8 Jul 2024 in eess.IV and cs.CV

Abstract: Deep networks can usually depend on extracting more structural information to improve denoising results. However, they may ignore correlation between pixels from an image to pursue better denoising performance. Window transformer can use long- and short-distance modeling to interact pixels to address mentioned problem. To make a tradeoff between distance modeling and denoising time, we propose a heterogeneous window transformer (HWformer) for image denoising. HWformer first designs heterogeneous global windows to capture global context information for improving denoising effects. To build a bridge between long and short-distance modeling, global windows are horizontally and vertically shifted to facilitate diversified information without increasing denoising time. To prevent the information loss phenomenon of independent patches, sparse idea is guided a feed-forward network to extract local information of neighboring patches. The proposed HWformer only takes 30% of popular Restormer in terms of denoising time.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com