Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GenFollower: Enhancing Car-Following Prediction with Large Language Models (2407.05611v1)

Published 8 Jul 2024 in cs.AI

Abstract: Accurate modeling of car-following behaviors is essential for various applications in traffic management and autonomous driving systems. However, current approaches often suffer from limitations like high sensitivity to data quality and lack of interpretability. In this study, we propose GenFollower, a novel zero-shot prompting approach that leverages LLMs to address these challenges. We reframe car-following behavior as a LLMing problem and integrate heterogeneous inputs into structured prompts for LLMs. This approach achieves improved prediction performance and interpretability compared to traditional baseline models. Experiments on the Waymo Open datasets demonstrate GenFollower's superior performance and ability to provide interpretable insights into factors influencing car-following behavior. This work contributes to advancing the understanding and prediction of car-following behaviors, paving the way for enhanced traffic management and autonomous driving systems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.