Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Treatment effect estimation under covariate-adaptive randomization with heavy-tailed outcomes (2407.05001v1)

Published 6 Jul 2024 in stat.ME

Abstract: Randomized experiments are the gold standard for investigating causal relationships, with comparisons of potential outcomes under different treatment groups used to estimate treatment effects. However, outcomes with heavy-tailed distributions pose significant challenges to traditional statistical approaches. While recent studies have explored these issues under simple randomization, their application in more complex randomization designs, such as stratified randomization or covariate-adaptive randomization, has not been adequately addressed. To fill the gap, this paper examines the properties of the estimated influence function-based M-estimator under covariate-adaptive randomization with heavy-tailed outcomes, demonstrating its consistency and asymptotic normality. Yet, the existing variance estimator tends to overestimate the asymptotic variance, especially under more balanced designs, and lacks universal applicability across randomization methods. To remedy this, we introduce a novel stratified transformed difference-in-means estimator to enhance efficiency and propose a universally applicable variance estimator to facilitate valid inferences. Additionally, we establish the consistency of kernel-based density estimation in the context of covariate-adaptive randomization. Numerical results demonstrate the effectiveness of the proposed methods in finite samples.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com