Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting Permutation Patterns with Multidimensional Trees (2407.04971v1)

Published 6 Jul 2024 in cs.DS and math.CO

Abstract: We consider the well-studied pattern counting problem: given a permutation $\pi \in \mathbb{S}_n$ and an integer $k > 1$, count the number of order-isomorphic occurrences of every pattern $\tau \in \mathbb{S}_k$ in $\pi$. Our first result is an $\widetilde{\mathcal{O}}(n2)$-time algorithm for $k=6$ and $k=7$. The proof relies heavily on a new family of graphs that we introduce, called pattern-trees. Every such tree corresponds to an integer linear combination of permutations in $\mathbb{S}_k$, and is associated with linear extensions of partially ordered sets. We design an evaluation algorithm for these combinations, and apply it to a family of linearly-independent trees. For $k=8$, we show a barrier: the subspace spanned by trees in the previous family has dimension exactly $|\mathbb{S}_8| - 1$, one less than required. Our second result is an $\widetilde{\mathcal{O}}(n{7/4})$-time algorithm for $k=5$. This algorithm extends the framework of pattern-trees by speeding-up their evaluation in certain cases. A key component of the proof is the introduction of pair-rectangle-trees, a data structure for dominance counting.

Summary

We haven't generated a summary for this paper yet.