Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unwinding Toxic Flow with Partial Information (2407.04510v1)

Published 5 Jul 2024 in q-fin.TR and q-fin.MF

Abstract: We consider a central trading desk which aggregates the inflow of clients' orders with unobserved toxicity, i.e. persistent adverse directionality. The desk chooses either to internalise the inflow or externalise it to the market in a cost effective manner. In this model, externalising the order flow creates both price impact costs and an additional market feedback reaction for the inflow of trades. The desk's objective is to maximise the daily trading P&L subject to end of the day inventory penalization. We formulate this setting as a partially observable stochastic control problem and solve it in two steps. First, we derive the filtered dynamics of the inventory and toxicity, projected to the observed filtration, which turns the stochastic control problem into a fully observed problem. Then we use a variational approach in order to derive the unique optimal trading strategy. We illustrate our results for various scenarios in which the desk is facing momentum and mean-reverting toxicity. Our implementation shows that the P&L performance gap between the partially observable problem and the full information case are of order $0.01\%$ in all tested scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.