Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Petri Nets as an Integrated Constraint Mechanism for Reinforcement Learning Tasks (2407.04481v1)

Published 5 Jul 2024 in cs.LG

Abstract: The lack of trust in algorithms is usually an issue when using Reinforcement Learning (RL) agents for control in real-world domains such as production plants, autonomous vehicles, or traffic-related infrastructure, partly due to the lack of verifiability of the model itself. In such scenarios, Petri nets (PNs) are often available for flowcharts or process steps, as they are versatile and standardized. In order to facilitate integration of RL models and as a step towards increasing AI trustworthiness, we propose an approach that uses PNs with three main advantages over typical RL approaches: Firstly, the agent can now easily be modeled with a combined state including both external environmental observations and agent-specific state information from a given PN. Secondly, we can enforce constraints for state-dependent actions through the inherent PN model. And lastly, we can increase trustworthiness by verifying PN properties through techniques such as model checking. We test our approach on a typical four-way intersection traffic light control setting and present our results, beating cycle-based baselines.

Summary

We haven't generated a summary for this paper yet.