Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Task Decision-Making for Multi-User 360 Video Processing over Wireless Networks (2407.03426v1)

Published 3 Jul 2024 in cs.NI, cs.LG, and cs.MM

Abstract: We study a multi-task decision-making problem for 360 video processing in a wireless multi-user virtual reality (VR) system that includes an edge computing unit (ECU) to deliver 360 videos to VR users and offer computing assistance for decoding/rendering of video frames. However, this comes at the expense of increased data volume and required bandwidth. To balance this trade-off, we formulate a constrained quality of experience (QoE) maximization problem in which the rebuffering time and quality variation between video frames are bounded by user and video requirements. To solve the formulated multi-user QoE maximization, we leverage deep reinforcement learning (DRL) for multi-task rate adaptation and computation distribution (MTRC). The proposed MTRC approach does not rely on any predefined assumption about the environment and relies on video playback statistics (i.e., past throughput, decoding time, transmission time, etc.), video information, and the resulting performance to adjust the video bitrate and computation distribution. We train MTRC with real-world wireless network traces and 360 video datasets to obtain evaluation results in terms of the average QoE, peak signal-to-noise ratio (PSNR), rebuffering time, and quality variation. Our results indicate that the MTRC improves the users' QoE compared to state-of-the-art rate adaptation algorithm. Specifically, we show a 5.97 dB to 6.44 dB improvement in PSNR, a 1.66X to 4.23X improvement in rebuffering time, and a 4.21 dB to 4.35 dB improvement in quality variation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. SeaGate, “State of the Edge,” https://www.seagate.com/www-content/enterprise-storage/it-4-0/images/Data-At-The-Edge-UP1.pdf, 2019, [Online].
  2. J. Chakareski, M. Khan, and M. Yuksel, “Towards Enabling Next Generation Societal Virtual Reality Applications for Virtual Human Teleportation,” ”IEEE Signal Processing Magazine”, 2022.
  3. J. Chakareski, M. Khan, T. Ropitault, and S. Blandino, “Millimeter Wave and Free-Space-Optics for Future Dual-Connectivity 6DOF Mobile Multi-User VR Streaming,” ACM Trans. Multimedia Comput. Commun. Appl., 2023.
  4. Statista, “AR and VR: Market data & analysis,” https://www.statista.com/outlook/amo/ar-vr/worldwide, [Online].
  5. J. Chakareski, “UAV-IoT for next generation virtual reality,” IEEE Transactions on Image Processing, 2019.
  6. J. Chakareski and M. Khan, “Live 360∘ Video Streaming to Heterogeneous Clients in 5G Networks,” IEEE Transactions on Multimedia, 2024.
  7. J. Chakareski, M. Khan, T. Ropitault, and S. Blandino, “6DOF Virtual Reality Dataset and Performance Evaluation of Millimeter Wave vs. Free-Space-Optical Indoor Communications Systems for Lifelike Mobile VR Streaming,” in Proceedings of 54th Asilomar Conf. on Sig., Sys., and Computers, 2020.
  8. J. Chakareski, “Viewport-Adaptive Scalable Multi-User Virtual Reality Mobile-Edge Streaming,” IEEE Trans. Image Processing, 2020.
  9. C.-H. Hsu, “MEC-Assisted FoV-Aware and QoE-Driven Adaptive 360° Video Streaming for Virtual Reality,” in Proceedings of 16th Intern. Conf. on Mobility, Sensing and Networking (MSN), 2020.
  10. S. Gupta, J. Chakareski, and P. Popovski, “mmWave Networking and Edge Computing for Scalable 360° Video Multi-User Virtual Reality,” IEEE Transactions on Image Processing, 2023.
  11. J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang, “An Edge-Computing Based Arch. for Mobile Aug. Reality,” IEEE Network, 2019.
  12. H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video Streaming with Pensieve,” in Proc. ACM SIGCOMM, 2017.
  13. K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-Optimal Bitrate Adaptation for Online Videos,” IEEE/ACM Trans. on Networking, 2020.
  14. B. Badnava, S. Reddy Chintareddy, and M. Hashemi, “QoE-Centric Multi-User mmWave Scheduling: A Beam Alignment and Buffer Predictive Approach,” in Proc. IEEE Inter. Symp. on Information Theory (ISIT), 2022.
  15. J. Chakareski and P. Frossard, “Distributed collaboration for enhanced sender-driven video streaming,” IEEE Transactions on Multimedia, 2008.
  16. A. B. Reis, J. Chakareski, A. Kassler, and S. Sargento, “Distortion optimized multi-service scheduling for next-generation wireless mesh networks,” in Proc. IEEE Conference on Computer Communications Workshops, 2010.
  17. J. Chakareski, J. Apostolopoulos, W.-T. Tan, S. Wee, and B. Girod, “Distortion chains for predicting the video distortion for general packet loss patterns,” in Proc. Int’l Conf. Acoustics, Speech, and Signal Processing.   IEEE, 2004.
  18. J. Chakareski, J. Apostolopoulos, S. Wee, W.-T. Tan, and B. Girod, “Rate-Distortion Hint Tracks for Adaptive Video Streaming,” IEEE Trans. Circuits and Systems for Video Technology, 2005.
  19. X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive Adaptive Streaming to Enable Mobile 360-Degree and VR Experiences,” IEEE Trans. on Multimedia, 2021.
  20. J. Chakareski, R. Aksu, V. Swaminathan, and M. Zink, “Full UHD 360-Degree Video Dataset and Modeling of Rate-Distortion Characteristics and Head Movement Navigation,” in Proc. ACM Multimedia Sys. Conf., 2021.
  21. B. Badnava, K. Roach, K. Cheung, M. Hashemi, and N. B. Shroff, “Energy-Efficient Deadline-Aware Edge Computing: Bandit Learning with Partial Observations in Multi-Channel Systems,” in Proceedings of IEEE Global Communications Conference, 2023.
  22. B. Badnava, T. Kim, K. Cheung, Z. Ali, and M. Hashemi, “Spectrum-Aware Mobile Edge Computing for UAVs Using Reinforcement Learning,” in Proceedings of IEEE/ACM Symposium on Edge Computing (SEC), 2021.
  23. M. Yu, H. Lakshman, and B. Girod, “A Framework to Evaluate Omnidirectional Video Coding Schemes,” in Proceedings of 2015 IEEE International Symposium on Mixed and Augmented Reality, 2015.
  24. L. Wang, S. Singh, J. Chakareski, M. Hajiesmaili, and R. K. Sitaraman, “BONES: Near-Optimal Neural-Enhanced Video Streaming,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2024.
  25. X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP,” in Proceedings of the 2015 ACM Conf. on Special Interest Group on Data Comm., 2015.
  26. M. Ghazikor, K. Roach, K. Cheung, and M. Hashemi, “Interference-Aware Queuing Analysis for Distributed Transmission Control in UAV Networks,” in arXiv:2401.11084, 2024.
  27. ——, “Exploring the Interplay of Interference and Queues in Unlicensed Spectrum Bands for UAV Networks,” in Proceedings of 57th Asilomar Conference on Signals, Systems, and Computers, 2023.
  28. D. Ye, Z. Liu, M. Sun, B. Shi, P. Zhao, H. Wu, H. Yu, S. Yang, X. Wu, Q. Guo, Q. Chen, Y. Yin, H. Zhang, T. Shi, L. Wang, Q. Fu, W. Yang, and L. Huang, “Mastering Complex Control in MOBA Games with Deep Reinforcement Learning,” in Proceedings of The 34 AAAI Conf. on AI, 2020.
  29. C. W. L. S. Tianchi Huang ; Chao Zhou ; Rui-Xiao Zhang, “Buffer Awareness Neural Adaptive Video Streaming for Avoiding Extra Buffer Consumption,” in Proceedings of IEEE INFOCOM Conf., 2023.
  30. K. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic Policy Gradient,” arXiv:2009.04416, 2020.
  31. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algorithms,” arXiv:1707.06347, 2017.
  32. A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang, D. Rybkin, Z. Yang, Z. M. Mao, F. Qian, and Z.-L. Zhang, “A Variegated Look at 5G in the Wild: Performance, Power, and QoE Implications,” in Proceedings of ACM SIGCOMM, 2021.

Summary

We haven't generated a summary for this paper yet.