Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Refutation of the Pach-Tardos Conjecture for 0-1 Matrices (2407.02638v1)

Published 2 Jul 2024 in math.CO and cs.DM

Abstract: The theory of forbidden 0-1 matrices generalizes Turan-style (bipartite) subgraph avoidance, Davenport-Schinzel theory, and Zarankiewicz-type problems, and has been influential in many areas, such as discrete and computational geometry, the analysis of self-adjusting data structures, and the development of the graph parameter twin width. The foremost open problems in this area is to resolve the Pach-Tardos conjecture from 2005, which states that if a forbidden pattern $P\in{0,1}{k\times l}$ is the bipartite incidence matrix of an acyclic graph (forest), then $\mathrm{Ex}(P,n) = O(n\log{C_P} n)$, where $C_P$ is a constant depending only on $P$. This conjecture has been confirmed on many small patterns, specifically all $P$ with weight at most 5, and all but two with weight 6. The main result of this paper is a clean refutation of the Pach-Tardos conjecture. Specifically, we prove that $\mathrm{Ex}(S_0,n),\mathrm{Ex}(S_1,n) \geq n2{\Omega(\sqrt{\log n})}$, where $S_0,S_1$ are the outstanding weight-6 patterns. We also prove sharp bounds on the entire class of alternating patterns $(P_t)$, specifically that for every $t\geq 2$, $\mathrm{Ex}(P_t,n)=\Theta(n(\log n/\log\log n)t)$. This is the first proof of an asymptotically sharp bound that is $\omega(n\log n)$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com