Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LiDAR-based HD Map Localization using Semantic Generalized ICP with Road Marking Detection (2407.02061v1)

Published 2 Jul 2024 in cs.RO

Abstract: In GPS-denied scenarios, a robust environmental perception and localization system becomes crucial for autonomous driving. In this paper, a LiDAR-based online localization system is developed, incorporating road marking detection and registration on a high-definition (HD) map. Within our system, a road marking detection approach is proposed with real-time performance, in which an adaptive segmentation technique is first introduced to isolate high-reflectance points correlated with road markings, enhancing real-time efficiency. Then, a spatio-temporal probabilistic local map is formed by aggregating historical LiDAR scans, providing a dense point cloud. Finally, a LiDAR bird's-eye view (LiBEV) image is generated, and an instance segmentation network is applied to accurately label the road markings. For road marking registration, a semantic generalized iterative closest point (SG-ICP) algorithm is designed. Linear road markings are modeled as 1-manifolds embedded in 2D space, mitigating the influence of constraints along the linear direction, addressing the under-constrained problem and achieving a higher localization accuracy on HD maps than ICP. Extensive experiments are conducted in real-world scenarios, demonstrating the effectiveness and robustness of our system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. C. Yan, C. Zheng, C. Gao, W. Yu, Y. Cai, and C. Ma, “Lane information perception network for HD maps,” in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020, pp. 1–6.
  2. Z. Yu, X. Ren, Y. Huang, W. Tian, and J. Zhao, “Detecting lane and road markings at a distance with perspective transformer layers,” in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020, pp. 1–6.
  3. Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, “Robust lane detection from continuous driving scenes using deep neural networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 41–54, 2020.
  4. J. Zhou, Y. Guo, Y. Bian, Y. Huang, and B. Li, “Lane information extraction for high definition maps using crowdsourced data,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 7, pp. 7780–7790, 2023.
  5. M. Bai, G. Mattyus, N. Homayounfar, S. Wang, S. K. Lakshmikanth, and R. Urtasun, “Deep multi-sensor lane detection,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 3102–3109.
  6. C. Wang, H. Zhang, M. Yang, X. Wang, L. Ye, and C. Guo, “Automatic parking based on a bird’s eye view vision system,” Advances in Mechanical Engineering, vol. 6, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:110578213
  7. B. Riveiro, H. González-Jorge, J. Martínez-Sánchez, L. Díaz-Vilariño, and P. Arias, “Automatic detection of zebra crossings from mobile LiDAR data,” Optics & Laser Technology, vol. 70, pp. 63–70, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030399215000237
  8. M. Soilán, B. Riveiro, J. Martínez-Sánchez, and P. Arias, “Segmentation and classification of road markings using MLS data,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 123, pp. 94–103, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924271616303173
  9. Y. Lee and J. Park, “CenterMask: Real-time anchor-free instance segmentation,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 13 903–13 912.
  10. J. B. Martirena, M. N. Doncel, A. C. Vidal, O. O. Madurga, J. F. Esnal, and M. G. Romay, “Automated annotation of lane markings using LIDAR and odometry,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 4, pp. 3115–3125, 2022.
  11. H. Xiong, T. Zhu, Y. Liu, Y. Pan, S. Wu, and L. Chen, “Road-model-based road boundary extraction for high definition map via LIDAR,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 18 456–18 465, 2022.
  12. C. Ye, H. Zhao, L. Ma, H. Jiang, H. Li, R. Wang, M. A. Chapman, J. M. Junior, and J. Li, “Robust lane extraction from MLS point clouds towards HD maps especially in curve road,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 1505–1518, 2022.
  13. L. Ma, Y. Li, J. Li, Y. Yu, J. M. Junior, W. N. Gonçalves, and M. A. Chapman, “Capsule-based networks for road marking extraction and classification from mobile LiDAR point clouds,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 4, pp. 1981–1995, 2021.
  14. B. He, R. Ai, Y. Yan, and X. Lang, “Lane marking detection based on convolution neural network from point clouds,” in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, pp. 2475–2480.
  15. H. Guan, J. Li, Y. Yu, Z. Ji, and C. Wang, “Using mobile LiDAR data for rapidly updating road markings,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2457–2466, 2015.
  16. S. Kammel and B. Pitzer, “LiDAR-based lane marker detection and mapping,” in 2008 IEEE Intelligent Vehicles Symposium, 2008, pp. 1137–1142.
  17. P. Lindner, E. Richter, G. Wanielik, K. Takagi, and A. Isogai, “Multi-channel lidar processing for lane detection and estimation,” in 2009 12th International IEEE Conference on Intelligent Transportation Systems, 2009, pp. 1–6.
  18. A. Hata and D. Wolf, “Road marking detection using lidar reflective intensity data and its application to vehicle localization,” in 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2014, pp. 584–589.
  19. F. Ghallabi, F. Nashashibi, G. El-Haj-Shhade, and M.-A. Mittet, “Lidar-based lane marking detection for vehicle positioning in an hd map,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018, pp. 2209–2214.
  20. F. Ghallabi, G. El-Haj-Shhade, M.-A. Mittet, and F. Nashashibi, “Lidar-based road signs detection for vehicle localization in an hd map,” in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 1484–1490.
  21. F. Ghallabi, M.-A. MITTET, G. EL-HAJ-SHHADE, and F. Nashashibi, “Lidar-based high reflective landmarks (hrl)s for vehicle localization in an hd map,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp. 4412–4418.
  22. D.-H. Paek, S.-H. Kong, and K. T. Wijaya, “K-lane: Lidar lane dataset and benchmark for urban roads and highways,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022, pp. 4449–4458.
  23. D.-H. Paek, K. T. Wijaya, and S.-H. Kong, “Row-wise lidar lane detection network with lane correlation refinement,” in 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 2022, pp. 4328–4334.
  24. D. Zermas, I. Izzat, and N. Papanikolopoulos, “Fast segmentation of 3d point clouds: A paradigm on lidar data for autonomous vehicle applications,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 5067–5073.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yansong Gong (1 paper)
  2. Xinglian Zhang (3 papers)
  3. Jingyi Feng (5 papers)
  4. Xiao He (54 papers)
  5. Dan Zhang (171 papers)

Summary

We haven't generated a summary for this paper yet.