Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed finite element methods for the Landau--Lifshitz--Baryakhtar and the regularised Landau--Lifshitz--Bloch equations in micromagnetics (2407.01125v1)

Published 1 Jul 2024 in math.NA and cs.NA

Abstract: The Landau--Lifshitz--Baryakhtar (LLBar) and the Landau--Lifshitz--Bloch (LLBloch) equations are nonlinear vector-valued PDEs which arise in the theory of micromagnetics to describe the dynamics of magnetic spin field in a ferromagnet at elevated temperatures. We consider the LLBar and the regularised LLBloch equations in a unified manner, thus allowing us to treat the numerical approximations for both problems at once. In this paper, we propose a semi-discrete mixed finite element scheme and two fully discrete mixed finite element schemes based on a semi-implicit Euler method and a semi-implicit Crank--Nicolson method to solve the problems. These numerical schemes provide accurate approximations to both the magnetisation vector and the effective magnetic field. Moreover, they are proven to be unconditionally energy-stable and preserve energy dissipativity of the system at the discrete level. Error analysis is performed which shows optimal rates of convergence in $\mathbb{L}2$, $\mathbb{L}\infty$, and $\mathbb{H}1$ norms. These theoretical results are further corroborated by several numerical experiments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.