Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Generative prediction of flow fields around an obstacle using the diffusion model (2407.00735v2)

Published 30 Jun 2024 in physics.flu-dyn and cs.LG

Abstract: We propose a geometry-to-flow diffusion model that utilizes obstacle shape as input to predict a flow field around an obstacle. The model is based on a learnable Markov transition kernel to recover the data distribution from the Gaussian distribution. The Markov process is conditioned on the obstacle geometry, estimating the noise to be removed at each step, implemented via a U-Net. A cross-attention mechanism incorporates the geometry as a prompt. We train the geometry-to-flow diffusion model using a dataset of flows around simple obstacles, including circles, ellipses, rectangles, and triangles. For comparison, two CNN-based models and a VAE model are trained on the same dataset. Tests are carried out on flows around obstacles with simple and complex geometries, representing interpolation and generalization on the geometry condition, respectively. To evaluate performance under demanding conditions, the test set incorporates scenarios including crosses and the characters `PKU.' Generated flow fields show that the geometry-to-flow diffusion model is superior to the CNN-based models and the VAE model in predicting instantaneous flow fields and handling complex geometries. Quantitative analysis of the accuracy and divergence demonstrates the model's robustness.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)