Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

FANFOLD: Graph Normalizing Flows-driven Asymmetric Network for Unsupervised Graph-Level Anomaly Detection (2407.00383v1)

Published 29 Jun 2024 in cs.LG and cs.AI

Abstract: Unsupervised graph-level anomaly detection (UGAD) has attracted increasing interest due to its widespread application. In recent studies, knowledge distillation-based methods have been widely used in unsupervised anomaly detection to improve model efficiency and generalization. However, the inherent symmetry between the source (teacher) and target (student) networks typically results in consistent outputs across both architectures, making it difficult to distinguish abnormal graphs from normal graphs. Also, existing methods mainly rely on graph features to distinguish anomalies, which may be unstable with complex and diverse data and fail to capture the essence that differentiates normal graphs from abnormal ones. In this work, we propose a Graph Normalizing Flows-driven Asymmetric Network For Unsupervised Graph-Level Anomaly Detection (FANFOLD in short). We introduce normalizing flows to unsupervised graph-level anomaly detection due to their successful application and superior quality in learning the underlying distribution of samples. Specifically, we adopt the knowledge distillation technique and apply normalizing flows on the source network, achieving the asymmetric network. In the training stage, FANFOLD transforms the original distribution of normal graphs to a standard normal distribution. During inference, FANFOLD computes the anomaly score using the source-target loss to discriminate between normal and anomalous graphs. We conduct extensive experiments on 15 datasets of different fields with 9 baseline methods to validate the superiority of FANFOLD.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube