Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting the Number of Domatic Partition of a Graph (2407.00103v1)

Published 27 Jun 2024 in math.CO and cs.DM

Abstract: A subset of vertices $S$ of a graph $G$ is a dominating set if every vertex in $V \setminus S$ has at least one neighbor in $S$. A domatic partition is a partition of the vertices of a graph $G$ into disjoint dominating sets. The domatic number $d(G)$ is the maximum size of a domatic partition. Suppose that $dp(G,i)$ is the number of distinct domatic partition of $G$ with cardinality $i$. In this paper, we consider the generating function of $dp(G,i)$, i.e., $DP(G,x)=\sum_{i=1}{d(G)}dp(G,i)xi$ which we call it the domatic partition polynomial. We explore the domatic polynomial for trees, providing a quadratic time algorithm for its computation based on weak 2-coloring numbers. Our results include specific findings for paths and certain graph products, demonstrating practical applications of our theoretical framework.

Citations (1)

Summary

We haven't generated a summary for this paper yet.