Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
113 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Weighted Circle Fusion: Ensembling Circle Representation from Different Object Detection Results (2406.19540v2)

Published 27 Jun 2024 in cs.CV

Abstract: Recently, the use of circle representation has emerged as a method to improve the identification of spherical objects (such as glomeruli, cells, and nuclei) in medical imaging studies. In traditional bounding box-based object detection, combining results from multiple models improves accuracy, especially when real-time processing isn't crucial. Unfortunately, this widely adopted strategy is not readily available for combining circle representations. In this paper, we propose Weighted Circle Fusion (WCF), a simple approach for merging predictions from various circle detection models. Our method leverages confidence scores associated with each proposed bounding circle to generate averaged circles. We evaluate our method on a proprietary dataset for glomerular detection in whole slide imaging (WSI) and find a performance gain of 5% compared to existing ensemble methods. Additionally, we assess the efficiency of two annotation methods, fully manual annotation and a human-in-the-loop (HITL) approach, in labeling 200,000 glomeruli. The HITL approach, which integrates machine learning detection with human verification, demonstrated remarkable improvements in annotation efficiency. The Weighted Circle Fusion technique not only enhances object detection precision but also notably reduces false detections, presenting a promising direction for future research and application in pathological image analysis. The source code has been made publicly available at https://github.com/hrlblab/WeightedCircleFusion

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.