Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 454 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Generation of Random (Generalized) Orthogonal Matrices (2406.18963v3)

Published 27 Jun 2024 in math.NA, cs.NA, math.NT, and math.PR

Abstract: This paper presents an algorithmic method for generating random orthogonal matrices (A) that satisfy the property (At S A = S), where (S) is a fixed real invertible symmetric or skew-symmetric matrix. This method is significant as it generalizes the procedures for generating orthogonal matrices that fix a general fixed symmetric or skew-symmetric bilinear form. These include orthogonal matrices that fall to groups such as the symplectic group, Lorentz group, Poincar\'e group, and more generally the indefinite orthogonal group, to name a few. These classes of matrices play crucial roles in diverse fields such as theoretical physics, where they are used to describe symmetries and conservation laws, as well as in computational geometry, numerical analysis, and number theory, where they are integral to the study of quadratic forms and modular forms. The implementation of our algorithms can be accomplished using standard linear algebra libraries.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube