Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Autotuning-based Optimization Framework for Mixed-kernel SVM Classifications in Smart Pixel Datasets and Heterojunction Transistors (2406.18445v2)

Published 26 Jun 2024 in cs.LG and cs.PF

Abstract: Support Vector Machine (SVM) is a state-of-the-art classification method widely used in science and engineering due to its high accuracy, its ability to deal with high dimensional data, and its flexibility in modeling diverse sources of data. In this paper, we propose an autotuning-based optimization framework to quantify the ranges of hyperparameters in SVMs to identify their optimal choices, and apply the framework to two SVMs with the mixed-kernel between Sigmoid and Gaussian kernels for smart pixel datasets in high energy physics (HEP) and mixed-kernel heterojunction transistors (MKH). Our experimental results show that the optimal selection of hyperparameters in the SVMs and the kernels greatly varies for different applications and datasets, and choosing their optimal choices is critical for a high classification accuracy of the mixed kernel SVMs. Uninformed choices of hyperparameters C and coef0 in the mixed-kernel SVMs result in severely low accuracy, and the proposed framework effectively quantifies the proper ranges for the hyperparameters in the SVMs to identify their optimal choices to achieve the highest accuracy 94.6\% for the HEP application and the highest average accuracy 97.2\% with far less tuning time for the MKH application.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets