Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability and Robustness of Time-discretization Schemes for the Allen-Cahn Equation via Bifurcation and Perturbation Analysis (2406.18393v1)

Published 26 Jun 2024 in math.NA and cs.NA

Abstract: The Allen-Cahn equation is a fundamental model for phase transitions, offering critical insights into the dynamics of interface evolution in various physical systems. This paper investigates the stability and robustness of frequently utilized time-discretization numerical schemes for solving the Allen-Cahn equation, with focuses on the Backward Euler, Crank-Nicolson (CN), convex splitting of modified CN, and Diagonally Implicit Runge-Kutta (DIRK) methods. Our stability analysis reveals that the Convex Splitting of the Modified CN scheme exhibits unconditional stability, allowing greater flexibility in time step selection, while the other schemes are conditionally stable. Additionally, our robustness analysis highlights that the Backward Euler method converges to correct physical solutions regardless of initial conditions. In contrast, the other methods studied in this work show sensitivity to initial conditions and may converge to incorrect physical solutions if the initial conditions are not carefully chosen. This study introduces a comprehensive approach to assessing stability and robustness in numerical methods for solving the Allen-Cahn equation, providing a new perspective for evaluating numerical techniques for general nonlinear differential equations.

Summary

We haven't generated a summary for this paper yet.