Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Waldhausen categories and a localization theorem (2406.18091v1)

Published 26 Jun 2024 in math.KT, math.CT, and math.RT

Abstract: Waldhausen categories were introduced to extend algebraic $K$-theory beyond Quillen's exact categories. In this article, we modify Waldhausen's axioms so that it matches better with the theory of extriangulated categories, introducing a weak Waldhausen category and defining its Grothendieck group. Examples of weak Waldhausen categories include any extriangulated category, hence any exact or triangulated category, and any Waldhausen category. A key feature of this structure is that it allows for "one-sided" extriangulated localization theory, and thus enables us to extract right exact sequences of Grothendieck groups that we cannot obtain from the theory currently available. To demonstrate the utility of our Weak Waldhausen Localization Theorem, we give three applications. First, we give a new proof of the Extriangulated Localization Theorem proven by Enomoto--Saito, which is a generalization at the level of $K_0$ of Quillen's classical Localization Theorem for exact categories. Second, we give a new proof that the index with respect to an $n$-cluster tilting subcategory $\mathscr{X}$ of a triangulated category $\mathscr{C}$ induces an isomorphism between $K_0{\mathsf{sp}}(\mathscr{X})$ and the Grothendieck group of an extriangulated substructure of $\mathscr{C}$. Last, we produce a weak Waldhausen $K_0$-generalization of a localization construction due to Sarazola that involves cotorsion pairs but allows for non-Serre localizations. We show that the right exact sequences of Grothendieck groups obtained from our Sarazola construction and the Extriangulated Localization Theorem agree under a common setup.

Citations (1)

Summary

We haven't generated a summary for this paper yet.