Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unmasking the Imposters: How Censorship and Domain Adaptation Affect the Detection of Machine-Generated Tweets (2406.17967v2)

Published 25 Jun 2024 in cs.CL

Abstract: The rapid development of LLMs has significantly improved the generation of fluent and convincing text, raising concerns about their potential misuse on social media platforms. We present a comprehensive methodology for creating nine Twitter datasets to examine the generative capabilities of four prominent LLMs: Llama 3, Mistral, Qwen2, and GPT4o. These datasets encompass four censored and five uncensored model configurations, including 7B and 8B parameter base-instruction models of the three open-source LLMs. Additionally, we perform a data quality analysis to assess the characteristics of textual outputs from human, "censored," and "uncensored" models, employing semantic meaning, lexical richness, structural patterns, content characteristics, and detector performance metrics to identify differences and similarities. Our evaluation demonstrates that "uncensored" models significantly undermine the effectiveness of automated detection methods. This study addresses a critical gap by exploring smaller open-source models and the ramifications of "uncensoring," providing valuable insights into how domain adaptation and content moderation strategies influence both the detectability and structural characteristics of machine-generated text.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bryan E. Tuck (1 paper)
  2. Rakesh M. Verma (10 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets