Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

The Overcooked Generalisation Challenge (2406.17949v2)

Published 25 Jun 2024 in cs.LG, cs.AI, and cs.MA

Abstract: We introduce the Overcooked Generalisation Challenge (OGC) - the first benchmark to study agents' zero-shot cooperation abilities when faced with novel partners and levels in the Overcooked-AI environment. This perspective starkly contrasts a large body of previous work that has trained and evaluated cooperating agents only on the same level, failing to capture generalisation abilities required for real-world human-AI cooperation. Our challenge interfaces with state-of-the-art dual curriculum design (DCD) methods to generate auto-curricula for training general agents in Overcooked. It is the first cooperative multi-agent environment specially designed for DCD methods and, consequently, the first benchmarked with state-of-the-art methods. It is fully GPU-accelerated, built on the DCD benchmark suite minimax, and freely available under an open-source license: https://git.hcics.simtech.uni-stuttgart.de/public-projects/OGC. We show that current DCD algorithms struggle to produce useful policies in this novel challenge, even if combined with recent network architectures that were designed for scalability and generalisability. The OGC pushes the boundaries of real-world human-AI cooperation by enabling the research community to study the impact of generalisation on cooperating agents.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets