Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MDHA: Multi-Scale Deformable Transformer with Hybrid Anchors for Multi-View 3D Object Detection (2406.17654v2)

Published 25 Jun 2024 in cs.RO and cs.AI

Abstract: Multi-view 3D object detection is a crucial component of autonomous driving systems. Contemporary query-based methods primarily depend either on dataset-specific initialization of 3D anchors, introducing bias, or utilize dense attention mechanisms, which are computationally inefficient and unscalable. To overcome these issues, we present MDHA, a novel sparse query-based framework, which constructs adaptive 3D output proposals using hybrid anchors from multi-view, multi-scale image input. Fixed 2D anchors are combined with depth predictions to form 2.5D anchors, which are projected to obtain 3D proposals. To ensure high efficiency, our proposed Anchor Encoder performs sparse refinement and selects the top-$k$ anchors and features. Moreover, while existing multi-view attention mechanisms rely on projecting reference points to multiple images, our novel Circular Deformable Attention mechanism only projects to a single image but allows reference points to seamlessly attend to adjacent images, improving efficiency without compromising on performance. On the nuScenes val set, it achieves 46.4\% mAP and 55.0\% NDS with a ResNet101 backbone. MDHA significantly outperforms the baseline where anchor proposals are modelled as learnable embeddings. Code is available at https://github.com/NaomiEX/MDHA.

Summary

We haven't generated a summary for this paper yet.