Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using iterated local alignment to aggregate trajectory data into a traffic flow map (2406.17500v3)

Published 25 Jun 2024 in stat.AP and cs.CE

Abstract: Vehicle trajectories, with their detailed geolocations, are a promising data source to compute traffic flow maps which facilitate the understanding of traffic flows at scales ranging from the city/regional level to the road level. The trade-off is that trajectory data are prone to measurement noise. While this is negligible for large-scale flow aggregation, it poses substantial obstacles for small-scale aggregation. To overcome these obstacles, we introduce innovative local alignment algorithms, where we infer road segments to serve as local reference segments, and proceed to align nearby road segments to them. We then deploy these algorithms in an iterative workflow to compute locally aligned flow maps. By applying this workflow to synthetic and empirical trajectories, we verify that our locally aligned flow maps provide high levels of accuracy and spatial resolution of flow aggregation at multiple scales.

Summary

We haven't generated a summary for this paper yet.