Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Review of Global Sensitivity Analysis Methods and a comparative case study on Digit Classification (2406.16975v1)

Published 23 Jun 2024 in cs.LG and cs.AI

Abstract: Global sensitivity analysis (GSA) aims to detect influential input factors that lead a model to arrive at a certain decision and is a significant approach for mitigating the computational burden of processing high dimensional data. In this paper, we provide a comprehensive review and a comparison on global sensitivity analysis methods. Additionally, we propose a methodology for evaluating the efficacy of these methods by conducting a case study on MNIST digit dataset. Our study goes through the underlying mechanism of widely used GSA methods and highlights their efficacy through a comprehensive methodology.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets