Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep-MPC: A DAGGER-Driven Imitation Learning Strategy for Optimal Constrained Battery Charging (2406.15985v1)

Published 23 Jun 2024 in eess.SY, cs.AI, and cs.SY

Abstract: In the realm of battery charging, several complex aspects demand meticulous attention, including thermal management, capacity degradation, and the need for rapid charging while maintaining safety and battery lifespan. By employing the imitation learning paradigm, this manuscript introduces an innovative solution to confront the inherent challenges often associated with conventional predictive control strategies for constrained battery charging. A significant contribution of this study lies in the adaptation of the Dataset Aggregation (DAGGER) algorithm to address scenarios where battery parameters are uncertain, and internal states are unobservable. Results drawn from a practical battery simulator that incorporates an electrochemical model highlight substantial improvements in battery charging performance, particularly in meeting all safety constraints and outperforming traditional strategies in computational processing.

Summary

We haven't generated a summary for this paper yet.