Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ISS-Scenario: Scenario-based Testing in CARLA (2406.15777v1)

Published 22 Jun 2024 in cs.SE

Abstract: The rapidly evolving field of autonomous driving systems (ADSs) is full of promise. However, in order to fulfil these promises, ADSs need to be safe in all circumstances. This paper introduces ISS-Scenario, an autonomous driving testing framework in the paradigm of scenario-based testing. ISS-Scenario is designed for batch testing, exploration of test cases (e.g., potentially dangerous scenarios), and performance evaluation of autonomous vehicles (AVs). ISS-Scenario includes a diverse simulation scenario library with parametrized design. Furthermore, ISS-Scenario integrates two testing methods within the framework: random sampling and optimized search by means of a genetic algorithm. Finally, ISS-Scenario provides an accident replay feature, saving a log file for each test case which allows developers to replay and dissect scenarios where the ADS showed problematic behavior.

Summary

We haven't generated a summary for this paper yet.