Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Exploratory Study on Human-Centric Video Anomaly Detection through Variational Autoencoders and Trajectory Prediction (2406.15395v1)

Published 29 Apr 2024 in cs.CV and cs.AI

Abstract: Video Anomaly Detection (VAD) represents a challenging and prominent research task within computer vision. In recent years, Pose-based Video Anomaly Detection (PAD) has drawn considerable attention from the research community due to several inherent advantages over pixel-based approaches despite the occasional suboptimal performance. Specifically, PAD is characterized by reduced computational complexity, intrinsic privacy preservation, and the mitigation of concerns related to discrimination and bias against specific demographic groups. This paper introduces TSGAD, a novel human-centric Two-Stream Graph-Improved Anomaly Detection leveraging Variational Autoencoders (VAEs) and trajectory prediction. TSGAD aims to explore the possibility of utilizing VAEs as a new approach for pose-based human-centric VAD alongside the benefits of trajectory prediction. We demonstrate TSGAD's effectiveness through comprehensive experimentation on benchmark datasets. TSGAD demonstrates comparable results with state-of-the-art methods showcasing the potential of adopting variational autoencoders. This suggests a promising direction for future research endeavors. The code base for this work is available at https://github.com/TeCSAR-UNCC/TSGAD.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com