Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Supermodular Approximation of Norms and Applications (2406.15180v1)

Published 21 Jun 2024 in cs.DS

Abstract: Many classical problems in theoretical computer science involve norm, even if implicitly; for example, both XOS functions and downward-closed sets are equivalent to some norms. The last decade has seen a lot of interest in designing algorithms beyond the standard $\ell_p$ norms $|\cdot |_p$. Despite notable advancements, many existing methods remain tailored to specific problems, leaving a broader applicability to general norms less understood. This paper investigates the intrinsic properties of $\ell_p$ norms that facilitate their widespread use and seeks to abstract these qualities to a more general setting. We identify supermodularity -- often reserved for combinatorial set functions and characterized by monotone gradients -- as a defining feature beneficial for $ |\cdot|_pp$. We introduce the notion of $p$-supermodularity for norms, asserting that a norm is $p$-supermodular if its $p{th}$ power function exhibits supermodularity. The association of supermodularity with norms offers a new lens through which to view and construct algorithms. Our work demonstrates that for a large class of problems $p$-supermodularity is a sufficient criterion for developing good algorithms. This is either by reframing existing algorithms for problems like Online Load-Balancing and Bandits with Knapsacks through a supermodular lens, or by introducing novel analyses for problems such as Online Covering, Online Packing, and Stochastic Probing. Moreover, we prove that every symmetric norm can be approximated by a $p$-supermodular norm. Together, these recover and extend several results from the literature, and support $p$-supermodularity as a unified theoretical framework for optimization challenges centered around norm-related problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube