Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Framework for Input Feature Attribution Analysis (2406.15085v1)

Published 21 Jun 2024 in cs.CL

Abstract: Explaining the decision-making process of machine learning models is crucial for ensuring their reliability and fairness. One popular explanation form highlights key input features, such as i) tokens (e.g., Shapley Values and Integrated Gradients), ii) interactions between tokens (e.g., Bivariate Shapley and Attention-based methods), or iii) interactions between spans of the input (e.g., Louvain Span Interactions). However, these explanation types have only been studied in isolation, making it difficult to judge their respective applicability. To bridge this gap, we propose a unified framework that facilitates a direct comparison between highlight and interactive explanations comprised of four diagnostic properties. Through extensive analysis across these three types of input feature explanations--each utilizing three different explanation techniques--across two datasets and two models, we reveal that each explanation type excels in terms of different diagnostic properties. In our experiments, highlight explanations are the most faithful to a model's prediction, and interactive explanations provide better utility for learning to simulate a model's predictions. These insights further highlight the need for future research to develop combined methods that enhance all diagnostic properties.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jingyi Sun (6 papers)
  2. Pepa Atanasova (27 papers)
  3. Isabelle Augenstein (131 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.