Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Event-Triggered Bandit Convex Optimization with Time-Varying Constraints (2406.14060v1)

Published 20 Jun 2024 in math.OC

Abstract: This paper considers the distributed bandit convex optimization problem with time-varying inequality constraints over a network of agents, where the goal is to minimize network regret and cumulative constraint violation. Existing distributed online algorithms require that each agent broadcasts its decision to its neighbors at each iteration. To better utilize the limited communication resources, we propose a distributed event-triggered online primal--dual algorithm with two-point bandit feedback. Under several classes of appropriately chosen decreasing parameter sequences and non-increasing event-triggered threshold sequences, we establish dynamic network regret and network cumulative constraint violation bounds. These bounds are comparable to the results achieved by distributed event-triggered online algorithms with full-information feedback. Finally, a numerical example is provided to verify the theoretical results.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com