Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resource-efficient Medical Image Analysis with Self-adapting Forward-Forward Networks (2406.14038v2)

Published 20 Jun 2024 in cs.CV and cs.AI

Abstract: We introduce a fast Self-adapting Forward-Forward Network (SaFF-Net) for medical imaging analysis, mitigating power consumption and resource limitations, which currently primarily stem from the prevalent reliance on back-propagation for model training and fine-tuning. Building upon the recently proposed Forward-Forward Algorithm (FFA), we introduce the Convolutional Forward-Forward Algorithm (CFFA), a parameter-efficient reformulation that is suitable for advanced image analysis and overcomes the speed and generalisation constraints of the original FFA. To address hyper-parameter sensitivity of FFAs we are also introducing a self-adapting framework SaFF-Net fine-tuning parameters during warmup and training in parallel. Our approach enables more effective model training and eliminates the previously essential requirement for an arbitrarily chosen Goodness function in FFA. We evaluate our approach on several benchmarking datasets in comparison with standard Back-Propagation (BP) neural networks showing that FFA-based networks with notably fewer parameters and function evaluations can compete with standard models, especially, in one-shot scenarios and large batch sizes. The code will be available at the time of the conference.

Citations (1)

Summary

We haven't generated a summary for this paper yet.