Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Galerkin Neural Network-POD for Acoustic and Electromagnetic Wave Propagation in Parametric Domains (2406.13567v1)

Published 19 Jun 2024 in math.NA and cs.NA

Abstract: We investigate reduced-order models for acoustic and electromagnetic wave problems in parametrically defined domains. The parameter-to-solution maps are approximated following the so-called Galerkin POD-NN method, which combines the construction of a reduced basis via proper orthogonal decomposition (POD) with neural networks (NNs). As opposed to the standard reduced basis method, this approach allows for the swift and efficient evaluation of reduced-order solutions for any given parametric input. As is customary in the analysis of problems in random or parametrically defined domains, we start by transporting the formulation to a reference domain. This yields a parameter-dependent variational problem set on parameter-independent functional spaces. In particular, we consider affine-parametric domain transformations characterized by a high-dimensional, possibly countably infinite, parametric input. To keep the number of evaluations of the high-fidelity solutions manageable, we propose using low-discrepancy sequences to sample the parameter space efficiently. Then, we train an NN to learn the coefficients in the reduced representation. This approach completely decouples the offline and online stages of the reduced basis paradigm. Numerical results for the three-dimensional Helmholtz and Maxwell equations confirm the method's accuracy up to a certain barrier and show significant gains in online speed-up compared to the traditional Galerkin POD method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Philipp Weder (2 papers)
  2. Mariella Kast (3 papers)
  3. Fernando HenrĂ­quez (9 papers)
  4. Jan S. Hesthaven (41 papers)

Summary

We haven't generated a summary for this paper yet.